Credit: Pixabay/CC0 Public Domain

Photosynthesis is the starting point for almost every food chain, sustaining most life on Earth. You would be forgiven, then, for thinking nature has perfected the art of turning sunlight into sugar. But that isn't exactly true. If you struggle with life goals, it might reassure you to know even plants haven't yet reached their full potential.

Every evolved trait is a trade-off between the benefit it provides and its cost in energy. The we domesticated for food are only as good at converting sunlight to sugar as they had to be to survive and reproduce. From a given amount of sunshine, most plants convert less than 5% of that light energy into biomass, and under some conditions, less than 1%.

We now have the knowledge and the tools to maximize photosynthesis in a range of food crops—but scientists aren't just studying how we help plants become better at photosynthesis out of curiosity. Climate change-driven weather such as drought and flooding is destroying crops and threatening crop yields around the world. This research is about making sure we can grow enough food to feed ourselves.

Plants such as wheat sometimes mistakenly make a toxic substance called 2-phosphoglycolate which then has to be recycled inside the plant, costing it energy. Scientists call this photorespiration. It happens when an enzyme crucial to the photosynthesis process, rubisco, mistakenly latches on to an oxygen molecule instead of carbon dioxide.

Rubisco makes this mistake up to 40% of the time. It happens because there is now a lot more oxygen in the atmosphere than in the past, put there by the very first photosynthesizers, cyanobacteria—microscopic organisms found in water. Rising temperatures cause more photorespiration too.

If we could prevent this mistake, it would leave plants more energy for photosynthesis.

Capturing sunlight

Our research project, PhotoBoost, is looking at how to create a kind of internal bypass that reduces photorespiration in rice and , two of the world's most important crops.

In the same way a coronary bypass diverts blood around narrow or clogged arteries in humans, the photorespiratory bypass gives plants the genetic tools they need to minimize rubisco's mistake. Genes from cyanobacteria make this and other photosynthetic improvements possible because they host an array of enzymes for better sunlight management.

Other researchers are looking to plants such as maize, which have evolved their own means of dealing with photorespiration, as a source of inspiration—and genes—for rice.

We're also improving the speed at which plants respond to changes in light intensity, as this affects photosynthesis too. Plants shut off their photosynthetic machinery if they get too much sun (when light is more intense), after which they can be slow to restart photosynthesizing when it gets cooler again—for example, when clouds roll over.

A research group in the US recently showed that speeding up this photoprotection process in soybean can lead to a 33% increase in seed yield.

On PhotoBoost, we're talking to researchers, agronomists and farmers all around the world to understand how to match the needs of society with this new frontier in plant science. According to Elizabete Carmo-Silva and Ana Moreira Lobo, colleagues at Lancaster University: "Climate change, declining yields and water stress constitute major challenges for food production this century."

Their team investigates plant responses to light and temperature, paying particular attention to the rubisco enzyme. Higher yield is perhaps the most obvious gain from improving photosynthesis, but it will also help make plants more resilient to drought and heat stress.

Provided by The Conversation