This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

proofread

Novel solution for Pichia pastoris enzyme production platform

Novel solution for Pichia pastoris enzyme production platform
Researchers successfully utilize cyanobacterial biomass as a novel feedstock in a cutting-edge P. pastoris platform. The extended toolkit exhibits promising results for offering a sustainable alternative for enzyme expression. Credit: Dr. Doris Schieder, Chair of Chemistry of Biogenic Resources, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Germany

The demand for industrial enzymes is continually rising, driven by the growing need to shift towards more sustainable industrial processes. Our research outlines a novel approach to enzyme production, harnessing the untapped potential of cyanobacterial biomass within the P. pastoris platform.

Group Leader Dr. Schieder highlights the nature of the study, stating, "Our work reveals the potential of cyanobacterial biorefineries to support ."

This achievement stems from an extensive multi-field approach. We characterized and expanded a combinatorial library, streamlining P. pastoris engineering for enhanced efficiency. Rigorous screening of these libraries yielded potent enzyme-producing strains, enabling the development of a fed-batch strategy for efficient AppA E. coli phytase expression.

A key element is the successful utilization of Nostoc sp. De1 biomass hydrolysate is a for fermentation, presenting a viable and sustainable alternative to conventional feedstock. Korbinian Sinzinger underscores the importance of this , stating, "Our findings demonstrate that the extended P. pastoris toolkit not only generates high-performing producer strains but also offers a greener pathway for expression, addressing the critical need for sustainable biobased production."

The paper is published in the Journal of Bioresources and Bioproducts.

More information: Korbinian Sinzinger et al, The Pichia pastoris Enzyme Production Platform: from Combinatorial Library Screening to Bench-Top Fermentation on Residual Cyanobacterial Biomass, Journal of Bioresources and Bioproducts (2023). DOI: 10.1016/j.jobab.2023.12.005

Provided by Journal of Bioresources and Bioproducts

Citation: Novel solution for Pichia pastoris enzyme production platform (2023, December 29) retrieved 2 February 2024 from https://phys.org/news/2023-12-solution-pichia-pastoris-enzyme-production.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Revolutionizing biorefineries: Advancing toward sustainable third-generation technologies in CO₂ utilization

29 shares

Feedback to editors